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Abstract 

Missing data poses a significant challenge in clinical real-world studies, often arising 
from unplanned data collection, misplacement, patient loss to follow-up, and other 
factors. While multiple imputation by chained equations (MICE) is a widely used 
method, its sequential nature introduces uncertainty, potentially impacting the predic-
tion model performance. We proposed and evaluated three uncertainty-aware func-
tions (i.e., uncertainty sampling (US), probability of improvement (PI), and expected 
improvement (EI)) integrated with linear regression (LinearReg), decision tree (DT), ran-
dom forest (RF), and extreme gradient boosting (XGBoost) using three large datasets: 
chronic kidney disease (CKD, n = 31,043), hypertension cohort from Ramathibodi Hospi-
tal (HT-RAMA, n = 140,047) and Khon Kaen University Hospital (HT-KKU, n = 108,942) 
with high missing rates. In the CKD cohort, uncertainty-aware models significantly 
improved performance (evaluated by root mean squared error (RMSE) and mean 
absolute error (MAE)) over standard MICE, except for XGBoost. LinearReg-EI performed 
best (RMSE 0.12, MAE 0.36), followed by RF-EI (RMSE 0.22, MAE 0.34), and DT-EI (RMSE 
0.21, MAE 0.38). In HT-RAMA, LinearReg-US performed best (RMSE 0.24, MAE 8.15), 
outperforming RF-US (RMSE 0.92, MAE 8.58) and DT-PI (RMSE 0.96, MAE 8.74). Similarly, 
in HT-KKU, LinearReg-US performed best (RMSE 0.98, MAE 12.00), followed by RF-PI 
(RMSE 1.93, MAE 12.90) and DT-US (RMSE 2.10, MAE 12.63). Uncertainty-aware models 
produced imputed distributions closely resembling the original data, unlike standard 
MICE. Our findings suggest that incorporating uncertainty functions can improve MICE, 
particularly for LinearReg, RF and DT. Further research is warranted to validate these 
findings across diverse clinical settings and model types.
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Introduction
Missing data presents an unavoidable challenge in clinical research, particularly in real-
world longitudinal data studies [1–3]. Data may be missing for various reasons, such 
as unplanned collection, misplacement, patient loss to follow-up, or a range of other 
causes. Such missingness represents a critical barrier in clinical research particularly in 
real-world datasets as improper handling of missing data can lead to biased estimates, 
decreased statistical power, and less generalizable findings, thereby leading to invalid 
research conclusions [1]. Various statistical approaches can handle missing data [4–7]. 
One common method is listwise deletion, which involves removing any data rows that 
contain missing values. Although this approach is easy and straightforward, it can sig-
nificantly reduce generalizability, statistical power when many values are missing, and 
may result in biased parameter estimates when missingness is also related to other fac-
tors that affect the outcome [8–10].

Imputation approaches, including single and multiple imputation (MI) techniques, 
have been used to predict missing data [4–7] based on the assumption that the data 
are missing at random (MAR). Single imputation typically substitutes missing values 
with one estimated value such as mean, median, mode, or the last observed value [11]. 
However, single imputation often leads to bias, underestimation of standard errors, and 
distortion of data distribution [5, 12]. MI generates predicted values derived from distri-
butions and relationships among other observed features and missing values [13]. There-
fore, missing data are replaced with different plausible values for individuals, estimated 
according to relationships among observed and missing features.

MI typically assumes that data are MAR, i.e., missingness is not associated with the 
missing value, conditional on the observed data [14]. There are two general approaches, 
i.e., joint modeling and fully conditional specification, the latter also known as multivari-
ate imputation by chained equations (MICE) [4]. Joint modeling assumes a multivariate 
normal distribution where imputations are generated from the fitted distribution. How-
ever, employing a joint model can present challenges, particularly when data contain 
high dimensionality with mixed binary and categorical features, which may exhibit non-
normal distributions [15, 16]. MICE, on the other hand, imputes missing values using 
separate univariate conditional distributions for each incomplete variable given all the 
others, simulating iteratively through each incomplete variable [15]. MICE is composed 
of three steps: first, it generates/creates multiple m datasets by iteratively imputing miss-
ing values using a regression model at multiple iterations; second, the estimation step 
is then performed to estimate parameters of interest for each m imputed dataset using 
standard techniques applicable to complete data; finally, these estimates are pooled or 
combined across all m datasets, providing a comprehensive estimate that accounts for 
missing data.

Despite its widespread use, consensus on the best framework for MICE across vari-
ous scenarios remains elusive [17, 18], including model choice, regression algorithm, 
hyperparameter tuning configurations, and even modeling decisions. The choice of the 
appropriate model in MICE remains context-dependent and varies according to the type 
of missing data. By default, MICE uses predictive mean matching for imputing miss-
ing values in numeric data while using a logit model for binary/categorical data [19]. 
However, given the advent of artificial intelligence, several studies have also utilized 
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machine learning (ML), such as classification and regression trees (CART) [20], deci-
sion trees (DT) [21], random forests (RF) [22], and extreme gradient boosting (XGBoost) 
[23]. These methods have demonstrated promising results in various clinical studies [13, 
24]. The performance of different imputation methods can be influenced by various fac-
tors such as the amount of missing data [25], its underlying distribution [26], and the 
complexity of the relationships between observed predictors and missing variables [27]. 
Existing literature provides few details on hyperparameter tuning and its impact on the 
performance of imputation methods [28]. Consequently, the selection of hyperparame-
ter values is generally limited to predictive modeling contexts, where choices are guided 
primarily by prediction performance. Furthermore, the inclusion of outcome variables in 
the imputation model is controversial as it may lead to increased bias [29] or less robust 
estimates [24, 30].

While MICE has demonstrated considerable effectiveness and has undergone signifi-
cant advancements, it remains a challenging problem. This is due to its reliance on using 
observed features to sequentially predict and impute missing data, which can intro-
duce uncertainty into the predicted values that may not perfectly reflect the true val-
ues, potentially affecting the accuracy of subsequent analyses. Once missing values have 
been imputed, they are used as predictors for sequentially imputing other values; the 
uncertainty associated with the previous imputation is carried over and can amplify the 
uncertainty in subsequent imputations. If the prediction model is updated by acquir-
ing the imputed values for subsequent iterations, the performance of the model may 
be degraded, particularly if the imputed values are a less accurate reflection of the true 
values.

Incorporation of uncertainty in imputation methods is crucial [31, 32]. Most uncer-
tainty-based imputation studies focus on the MI framework since it was originally con-
structed to address this problem by generating multiple imputed datasets. However, the 
original MI only considers the uncertainty within the scope of the missing data itself, 
typically through the variability introduced by the multiple datasets generated. To the 
best of our knowledge, only two studies considered imputation uncertainty in the pres-
ence of missing data. First, Han and Kang [32] addressed this shortcoming using uncer-
tainty functions (i.e., random selection, confidence, margin, entropy [33], and gini index) 
in MI frameworks that select samples with low uncertainty. These functions guide the 
selection of samples for model training to identify which data points have low uncer-
tainty to reduce model degradation [33]. However, these functions are specifically 
designed for ordinal or nominal data and may be less appropriate for continuous data, 
especially for real-world data (RWD) in clinical settings where some continuous data 
are present. In addition, their uncertainty models were created based on the assumption 
of missing completely at random (MCAR), which may not be applicable to clinical data 
where MAR is more common. Furthermore, only RF was used within MICE and com-
parisons with other imputation methods in their study were not considered, which may 
have been better performance. Second, Tharwat and Schenck [31] extended a previous 
study by comparing the performance of median imputation, K-Nearest Neighbor, and 
RF [31] using 18 public datasets with sample sizes ranging from 150 to 3147. Incomplete 
datasets were created under MCAR with different missingness ratios.
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An uncertainty-aware model is a predictive model that not only aims at predic-
tions but also quantifies the uncertainty associated with those predictions. Recently, it 
has been applied in large language models [34, 35], medical image classification [36], 
and causal inference [37, 38] to ensure validity of predictions. To quantify uncertain-
ties, ML models incorporate uncertainty functions, also known as acquisition func-
tions, that guide the process for selecting the next data points to evaluate, leveraging 
the uncertainty estimates from the model [31, 32, 39]. These functions find a balance 
between sampling points, i.e., where the model is uncertain, and where the model pre-
dicts optimal outcomes. This balance is particularly crucial for imputation, as it allows 
the model to effectively handle missing data by exploring a range of potential values 
and incorporating the most plausible ones, thereby improving overall data integrity and 
predictive performance [31, 32]. Known uncertainty functions for handling continuous 
data include uncertainty sampling (US) [40], probability of improvement (PI) [41], and 
expected improvement (EI) [42]. The US method aims to improve overall model accu-
racy by selecting data points where the model is most uncertain. PI prioritizes points 
with high potential for improvement, while EI balances both potential gains and associ-
ated uncertainty.

While the potential of uncertainty-aware functions to enhance imputation methods 
is significant, their application in MI remains largely unexplored. This research gap pre-
sents an opportunity to improve prediction accuracy, particularly in real-world health-
care settings where accurate data is paramount for predicting patient outcomes. Our 
study addresses this gap by proposing uncertainty-aware methods for prediction mod-
els that explicitly account for the inherent uncertainty introduced by imputation, using 
machine learning (ML), such as classification and regression trees (CART) [20], deci-
sion trees (DT) [21], random forests (RF) [22], and extreme gradient boosting (XGBoost) 
[23].

We propose a novel approach in reducing this uncertainty by strategically querying 
additional samples based on their estimated uncertainty levels. Our research leverages 
the widely used MICE framework and incorporates tailored uncertainty functions. To 
validate our approach, we apply these methods to three large RWD cohorts relating to 
chronic kidney disease (CKD) and hypertension (HT). The results of these applications 
are presented and discussed, providing insights into the effectiveness of our proposed 
uncertainty-aware methods for enhancing imputation in complex healthcare datasets.

Method
Datasets

Two retrospective, longitudinal RWD cohorts were obtained from the data warehouses 
of the Clinical Epidemiology and Biostatistics (CEB) Department, Faculty of Medi-
cine Ramathibodi Hospital, Mahidol University (RAMA) (see more details on website 
https://​www.​rama.​mahid​ol.​ac.​th/​ceb/​CEBda​tawar​ehouse/​Overv​iew. Accessed 19 Febru-
ary 2025), with additional cohort from collaboration of the Srinagarind Hospital, Khon 
Kaen University (KKU) (https://​www.​rama.​mahid​ol.​ac.​th/​ceb/​CEBda​tawar​ehouse/​multi​
center/​ht. Accessed 19 February 2025). The RAMA database included 31,043 patients 
with CKD and 140,047 patients with HT (called HT-RAMA), identified between 1st Jan-
uary 2010 until 31st December 2022, while KKU database contributed 108,942 patients 

https://www.rama.mahidol.ac.th/ceb/CEBdatawarehouse/Overview
https://www.rama.mahidol.ac.th/ceb/CEBdatawarehouse/multicenter/ht
https://www.rama.mahidol.ac.th/ceb/CEBdatawarehouse/multicenter/ht
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with HT from 1st January 2015 until 31st December 2023. The CKD-RAMA and HT-
RAMA cohorts share several features and include 9.349 overlapping patients (6.7% of 
HT-RAMA, 30.1% of CKD-RAMA) with both CKD and HT. The CKD cohort was used 
for internal validation, while both HT-RAMA and HT-KKU cohorts served as exter-
nal validation datasets to demonstrate the generalizability of the proposed imputation 
method across different clinical domains and larger datasets. All datasets were approved 
by the Human Research Ethics Committee of Ramathibodi and Srinagarind Hospitals 
(COA. No. MURA2024/468 for CKD; COA No. MURA2023/689 for HT-RAMA; and 
HE681020 for HT-KKU).

The CKD, HT-RAMA, and HT-KKU cohort datasets were independently constructed 
using eight domains including demographics, physical examination, medical conditions, 
diagnoses, procedures, laboratory results, medications, and outcomes. The three cohorts 
were curated through linked hospital numbers and visit dates, and subsequently merged 
into a single, unified dataset. Laboratory data were also standardized based on Unified 
Code for Units of Measure (UCUM). For the CKD cohort, we identified CKD patients 
using International Classification of Diseases 9th and 10th editions (ICD-9 and ICD-10 
codes), and eGFR < 60 for more than two consecutive occasions over more than 90 days 
or more, and patients with glomerulonephritis following confirmation by kidney biopsy. 
Similarly, anti-hypertensive medication and ICD-10 codes were used to identify patients 
in HT cohort. Due to the high dimensionality of the data from varying numbers of 
patient visits, laboratory measures acquired, or medication prescribed at different visits, 
we aggregated visit data into one-year intervals. To minimize the impact of outliers and 
prevent the prediction of clinical values that deviate significantly from real-world ranges, 
truncation was used for all features in both datasets. The range of values for covariates in 
CKD and HT datasets are listed in Supplementary Table 1.

Baseline characteristics of patients (i.e., demographics, comorbidities, and medica-
tions) are described in Supplementary Table 2. The percentage of missing data for each 
variable in the CKD and HT datasets (HT-RAMA and HT-KKU) ranged from 4.16% 
to 49.01% in CKD, 15.75–53.32% in HT-RAMA, and 28.20–67.88% in HT-KKU. In 
the CKD cohort, missingness was minimal for age and serum creatinine (0.34%), while 
body weight (4.16%), height (6.16%), fasting blood glucose (9.79%), and total cholesterol 
(10.22%) had relatively lower missing rates. In contrast, the HT datasets exhibited sub-
stantially higher missingness rates, particularly in HT-KKU, where height (43.55%) and 
body weight (42.30%) were frequently missing, compared to HT-RAMA (15.75% and 
31.59%, respectively). Lipid profiles were among the most commonly missing variables 
across all datasets. In CKD, the missing rates for low-density lipoprotein (LDL) and 
high-density lipoprotein (HDL) were 21.73% and 29.14%, respectively. However, in HT-
RAMA, LDL and HDL missingness increased to 48.25% and 53.32%, respectively, while 
HT-KKU recorded the highest missingness, with LDL absent in 67.33% and HDL in 
67.88% of cases, indicating substantial data sparsity for key cardiovascular risk markers. 
Similarly, triglycerides were missing in 19.63% of cases in CKD, but the rates escalated 
to 44.72% in HT-RAMA and 67.06% in HT-KKU, further emphasizing the challenge of 
incomplete lipid data in hypertensive populations. Among the metabolic biomarkers, 
uric acid (49.01%) and HbA1c (40.72%) exhibited the highest levels of missing data in 
CKD, reflecting limitations in the availability of glycemic control and kidney function 
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markers. Additionally, missingness in serum creatinine was substantial in both HT 
cohorts (28.63% in HT-RAMA and 37.36% in HT-KKU), suggesting challenges in renal 
function assessment in hypertensive populations. These high levels of missingness, par-
ticularly for HbA1c, uric acid, and HDL, pose significant analytical challenges, as nearly 
half of the data points for these critical clinical indicators are unavailable. Notably, the 
HT-KKU cohort exhibited the most extensive missingness across key clinical variables, 
reinforcing the need for robust imputation strategies to enhance data completeness and 
reliability in subsequent analyses.

Due to variations in data availability and missingness across cohorts, certain features 
were more prevalent in one dataset than the other. For instance, systolic blood pres-
sure (SBP) and diastolic blood pressure (DBP) were extensively recorded in HT datasets 
but were unavailable in the CKD dataset since blood pressure may be considered a less 
significant predictor of CKD progression compared to serum creatinine and uric acid, 
which were more consistently recorded in the CKD cohort. Conversely, HT datasets had 
more complete blood pressure data but lacked glucose, HbA1c, and uric acid because 
these markers are more relevant to metabolic conditions like diabetes or kidney disease. 
Given these differences, we strategically curated our datasets to ensure methodological 
consistency and enhance the generalizability of our imputation models. While all eight 
domains were used to construct both cohorts, we prioritized commonly utilized clinical 
variables to maintain analytical robustness across CKD and HT populations. To provide 
a comprehensive overview of comorbidities, medications, and laboratory tests derived 
from these domains, a detailed descriptive statistics table is presented in Supplementary 
Table 2.

Amputated data

We applied Van Buuren’s guidelines to select an imputation model by comparing the 
inferences obtained from a fully observed dataset (or complete dataset) to those com-
puted by pooling all MICE estimates from an amputated version of the complete dataset. 
A complete dataset was created through listwise deletion. Amputation was defined as a 
process of generating synthetic missing values from the complete data. The missing data 
patterns necessary for multivariate amputation were specified to create a similar pat-
tern of missing data similar to the original dataset. The overall multivariate amputation 
procedure is shown in Fig. 1. It begins by determining the missing patterns of the origi-
nal dataset, where a missing pattern is a specific combination of variables with missing 
pattern per sample per observation. We identified k = 296 missing patterns in the CKD 
dataset such that [uric acid’] obtained the highest missingness proportion of 32.02%, fol-
lowed by [HbA1c’] and [‘HbA1c’, ‘uric acid’] with 20.28% and 13.98%, respectively. By 
specifying the proportion in the multivariate amputation for all different patterns, the 
amputated dataset had a proportion and number of cases that was similar to the original 
dataset. However, too many patterns can result in subsets with a few candidates because 
the amputated data was generated from a complete dataset which represented only 8156 
of the total 31,043 patients. Therefore, a threshold of 1% was determined through a trial-
and-error approach to balance the trade-off between retaining sufficient candidates in 
the complete dataset for amputation and minimizing missing patterns. This threshold 
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was chosen to ensure a meaningful reduction in missing patterns, decreasing them from 
296 to 16, while preserving enough data for robust analysis.

The complete dataset was then divided into k subsets randomly based upon the 
selected missing patterns. The subset size depended on the proportion vector repre-
sented by the frequency of the specific pattern missing from the complete dataset. The 
data rows in the subsets were considered a candidate for missingness, based on several 
factors including the missingness mechanism. Finally, the data rows in the subsets were 
made missing according to the missing data pattern along with their probability of being 
missing. The probability ( prob ) of being missing was calculated from the ratio of the 
difference between the total number of samples in the original dataset Noriginal and the 
complete dataset Ncomplete to the total number of records in the original dataset.

This method denotes the probability of the proportion of missing information within 
the dataset. After the introduction of missing values to each pattern, these subsets were 
merged to generate an incomplete dataset with missing values in different data rows.

To verify the effectiveness of multivariate amputation, we compared the distribution 
of each variable in the original with complete and amputated datasets. Data distribu-
tion and percentage missingness of the original, complete, and amputated datasets from 
CKD cohort are presented in Table 1, demonstrating consistency between the complete 
and amputated dataset across various variables. For instance, BMI and serum creatinine 
are almost unchanged from a mean of 26.612 and 1.483–26.613 and 1.483, respectively, 
demonstrating the amputation’s ability to preserve the distribution within a clinically 
relevant range. Similarly, while triglycerides exhibited a slight variation in their distribu-
tion between the complete and amputated dataset, it still fell within a range that main-
tained the original dataset’s integrity. We also compared the missing rates between the 
complete and amputated datasets where missing rates in the amputated dataset should 

prob =
Noriginal − Ncomplete

Noriginal

Table 1  Variable distribution with missing values in original, complete, and amputated datasets 
from the CKD cohort

BMI body mass index, HbA1c hemoglobin A1c, HDL high-density lipoprotein, LDL low-density lipoprotein. Cholesterol refers 
to total cholesterol, and glucose refers to fasting plasma glucose for brevity

Variables Mean (SD) Missing Rate (%)

Original data Complete data Amputated data Original data Amputated data

BMI 26.37 (3.85) 26.61 (3.80) 26.61 (3.79) 6.16 5.63

Body Weight 71.26 (12.85) 72.26 (12.239) 72.25 (12.25) 4.16 3.7

Cholesterol 198.64 (52.00) 187.91 (39.93) 187.89 (40.08) 10.22 10.02

Glucose 138.54 (73.29) 145.36 (74.18) 145.03 (73.70) 9.79 9.54

HbA1c 6.87 (1.59) 6.72 (1.44) 6.68 (1.41) 40.72 41.53

HDL 47.07 (14.77) 45.29 (12.77) 45.37 (12.72) 29.14 29.27

Height 159.55 (8.027) 160.16 (7.99) 160.16 (7.99) 6.16 5.63

LDL 107.71 (27.65) 107.14 (27.39) 107.38 (27.33) 21.73 22.08

Serum Creatinine 1.48 (0.91) 1.48 (0.78) 1.48 (0.78) 0.34 0.18

Triglycerides 156.76 (109.12) 159.31 (99.44) 158.90 (98.92) 19.63 19.8

Uric Acid 7.30 (2.15) 7.18 (2.00) 7.19 (1.94) 49.01 50.32
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closely resemble those in the original dataset. For BMI, body weight, and height, the 
missing rates in the amputated dataset were slightly lower than those in the original 
dataset. Lipid profile variables, such as HDL, LDL, total cholesterol, and triglycerides, 
showed almost identical missing rates between the original and amputated datasets, 
suggesting a high fidelity in multivariate amputation for these variables. Glucose exhib-
ited missing rates of 9.79% in the original data and 9.54% in the amputated data, while 
HbA1c had missing rates of 40.72% and 41.53%, respectively. The percentage of missing 
data for serum creatinine and uric acid between both datasets differed only slightly, with 
similar mean (SD) values across both datasets. Overall, the multivariate amputation pro-
cess effectively preserved the missing data patterns, ensuring that the amputated data 
maintained a distribution like the complete dataset.

Uncertainty‑aware MICE

Consider a dataset X ∈ R
n×p containing N  patients and p covariates. Let 

xj =
(
x1j , x2j · · · , xNj

)T ∈ R
N denote the j-th covariate, where each entry xij corre-

sponds to patient i and j-th covariate. For each covariate xj , the entries are partitioned 
into observed xobsj  and missing xmis

j  components, such that xj = (xobsj , xmis
j ) . Here, xobsj  

represents the subset of xij values that are observed across i to N  patients, while xmis
j  

contains the missing entries. Missingness patterns may vary across all patients; thus, the 
indices of missing entries differ for each xj . The MICE framework iteratively imputes 
missing values by modeling each covariate conditional on the others. For the j-th covari-
ate, let Fj ⊆ {1,2, · · · , p}\{j} denote the set of indices for predictors used to impute xmis

j  . 
The imputation model for xmis

j  is formulated as:

where fj is a regression function trained on the observed data xobsj  , and ximp
−j  denotes the 

current imputed values for the selected covariates, except xj . The training data for fj is 

constructed from patients with observed xj , expressed as xtrainj =
{(

x
imp
i,Fj

, xij

)
|xij ∈ x

obs
j

}
 , 

where ximp
i,Fj

 represents the imputed values of predictors Fj for the i-th patient. The test 

data xtrainj =
{
x
imp
i,Fj

|xij ∈ x
mis
j

}
 , consists of patients with missing xj.

To initialize the imputation, missing values in xtrainj  are temporarily filled with random 
draws from a normal distribution parameterized by the observed data:

ensuring initial imputations reflect inherent uncertainty. This approach follows the orig-
inal MICE framework, where missing values are firstly estimated from the observed data 
to enable the imputation process [4, 43]. While this initialization may introduce some 
bias by centering imputed values around the mean, it serves only as a temporary approx-
imation to ensure algorithmic stability. The iterative refinement process progressively 
updates these estimates through multiple imputations, progressively aligning them with 
the conditional expected value while preserving the inherent uncertainty in the data.

x̂
mis
j = fj

(
x
imp
−j |xobsj

)
,

xinitik ∼ N

(
µ

(
x
obs
k

)
, σ 2

(
x
obs
k

))
, for xik ∈ x

mis
k
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The algorithm generates m = 5 imputed datasets through T = 50 iterations, following 
the suggestions of van Buuren and Groothuis-Oudshoorn [14, 15, 44, 45]. At iteration t 
of imputed dataset d , the imputed values x̂mis(d,t)

j  are updated as:

where f (d,t)j  is the regression model trained on xtrainj  from the previous iteration. The 
missing rate in the dataset was identified and variables prioritized from the least to the 
highest missing frequency. Within each iteration, values were standardized to scale the 
data. We employ randomized search over grid search since it samples from a predefined 
parameter distribution that significantly reduces computation resources while effectively 
uncovering optimal hyperparameters. The search space for the model hyperparameters 
in CKD and HT cohorts is shown in Supplementary Table 5. The best hyperparameters 
from random search were extracted for subsequent model training. However, to mitigate 
error propagation, uncertainty functions φ(·) are applied for d ≥ 2 to prioritize informa-
tive samples. For each patient across all covariates xtraini  , the uncertainty δi is quantified, 
and a subset x̃train(d,t)j  is selected to refine f (d,t)j  . To quantify imputation uncertainty, we 
define an uncertainty function φj(xi) that evaluates the variability of the imputed feature 
vector xi across multiple iterations. This helps prioritize missing values based on their 
uncertainty, improving the stability of the imputation process. To further reduce reliance 
on extensive training data, only certain samples are selected for refinement based on an 
uncertainty function, as not all training samples contribute equally to model training. 
This ensures that uncertainty samples, which may introduce noise into the model, are 
avoided. Once fj is fitted, it is evaluated on xtestj  , and the imputed values x̂mis

j  are trun-
cated based on clinically plausible ranges for each variable. Additionally, winsorization is 
applied by capping values below the 5th percentile and above the 95th percentile, reduc-
ing the influence of extreme outliers. This approach minimizes the impact of extreme 
imputations while ensuring robust estimates.

To prevent overfitting and ensure computational efficiency, early stopping γ was 
employed like that used in missForest, denoted as γmF , where the convergence criterion is 
based on the sum of the squared differences normalized by the squared sum of the current 
imputed values:

where convergence is reached when the sum of squared differences falls below a prede-
fined threshold. Another convergence criterion was compared; variation threshold (VT) 
was based on the root mean squared difference normalized by the length of the imputed 
datasets used, and expressed as:

x̂
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j
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∑
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where Nmis(t)
j  is the number of missing values in covariate j at iteration t . To monitor 

convergence, we calculated ωt = |γVT (t)− γVT (t − 1)| , which measures the difference 
error between iterations. Convergence is achieved if the variation threshold satisfies 
ωt < ǫ, ∀i ∈ {t − 4, t − 3, t − 2, t − 1, t} with ǫ = 1× 10−5 , ensuring stability. If this cri-
terion holds for five consecutive iterations (i.e., {t − 4, t − 3, t − 2, t − 1, t} ), the impu-
tation process for d is terminated. If the convergence is not reached, iteration t + 1 is 
further performed using the same training dataset xtrainj  from iteration t . Each imputed 
dataset di is appended into a list for pooling.

After the iterative imputation process is completed for all m datasets, the final imputed 
values are pooled to obtain a consolidated estimate. The pooled imputation follows 
Rubin’s rules, where the final imputed values for all missing values are computed as

where Xpool represents the matrix of pooled imputed values across all covariates and all 
missing entries. The overall algorithm is summarized in Table 2.

The whole analyses were conducted using Python (version 3.9) within a Visual Stu-
dio Code integrated development environment. Specifically, LinearReg, DT, and RF were 
implemented using the scikit-learn library (version 1.3.2), while XGBoost was applied 
using the XGBoost library (version 1.7.2).

X
pool =

1

m

∑m

d=1
x̂
mis(d)

Table 2  Algorithm of Uncertainty-Aware MICE
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Uncertainty functions

Novel query selection methods that consider imputation uncertainty to improve the 
training process of imputation models were considered. Given a pool of samples with 
missing values, the imputation uncertainty δ of each sample was quantified by introduc-
ing an uncertainty function φ(·) that aggregates the SD ( σ ) of the Fj per missing variable 
x
mis
j  and selects samples for model training. In this study, three uncertainty functions 

were proposed which are described below:
a. US: To quantify imputation uncertainty using US, we calculated the variance σ 2

i  of the 
patient’s feature vector xi across all imputations m , with degrees of freedom equal to 1, as 
follows:

where x(d)ij  is the imputed value of feature j for patient i in the d-th imputation, and xij is 
the mean imputed value for feature j of patient i across all imputations. Once we calcu-
late the variance for each feature, we computed the total sum of variances across all fea-
tures for a given set of imputations, which can be represented by the following formula:

b. PI: While the US prioritizes samples with the least uncertainty, PI selects samples 
characterized with high uncertainty, underpinned by the assumption that these sam-
ples will most likely provide significant improvement in the subsequent iterations. This 
approach is grounded in the assumption that exploring areas of high uncertainty is likely 
to yield an improvement in model accuracy and robustness.

Suppose there is x̂(d,t)ij  as the imputed value of variable j of patent i at imputed dataset d , 
at iteration t . The improvement is defined as I

(
x̂
(d,t)
ij

)
= max

(
x̂
(d,t)
ij − x̂

(∗,t)
ij , 0

)
 where x̂(∗,t)ij  

is the current best imputed value of variable j . Hence, x̂(d,t)ij − x̂
(∗,t)
ij  is negative if the new 

imputed value is less than the previous imputed value, which implies a negative improve-

ment. In contrast, if the x̂(d,t)ij  has larger uncertainty, then x̂(d,t)ij − x̂
(∗,t)
ij  is positive. In this 

case, I
(
x̂
(d,t)
ij

)
 provides an indication of model improvement over the current best solution. 

The probability assigned of I
(
x̂
(d,t)
ij

)
> 0 , i.e., x̂(d,t)j  having larger improvement than the 

current best x̂(∗,t)ij  . Using a Gaussian Process where x̂(d,t)ij  is modeled as a Gaussian distribu-

tion, x̂(d,t)ij  is sampled from a normal distribution with mean µ
(
x̂
(1,t)
ij , · · · , x̂(d,t)ij

)
 and vari-

ance σ 2
(
x̂
(1,t)
ij , · · · , x̂(d,t)ij

)
 . If z ∼ N (0,1) , then 
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)
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)
z is a standard normal distribution. 

Therefore, the improvement function I
(
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(d,t)
ij

)
 is rewritten as
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Using the equation above, PI is then derived as:

where �(z) is the cumulative distribution function (CDF) of z and 

z =
µ

(
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(1,t)
ij ,··· ,x̂(d,t)ij

)
−x̂

(∗,t)
ij

σ

(
x̂
(1,t)
ij ,··· ,x̂(d,t)ij

)  . The sample with the highest PI is selected for model training.

c. EI uses the same assumption as PI where it selects samples with high uncertainty 
since these samples will most likely provide significant improvement in subsequent iter-
ations. The primary difference compared with PI is that EI considers the magnitude of 
improvement by calculating the expected value of improvement, denoted as E
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where �(z) is the probability density function of the standard normal distribution 
N (0,1) . Therefore, EI is expressed as:

Evaluation metrics

A series of regression models were incorporated with uncertainty functions during 
model training. Metrics used for performance evaluation were the root mean squared 
error (RMSE), mean absolute error (MAE), data distribution, and imputation error as 
follows:

a) The RMSE represents the quadratic means of the differences between the imputed 
and observed data. It is one of the most used evaluation metrics. The value of RMSE is 
always non-negative and a lower value reflects better performance.

b) The mean absolute error (MAE) is the mean absolute difference between the actual 
and the imputed data, and a lower value is preferable to a larger value.

c) Data distribution of each imputed variable was explored by computing the mean and 
SD based on pooled imputed values from all models tested. Specifically, the mean of the 
imputed variable across all imputation methods and models provides a measure of cen-
tral tendency, while the SD indicates the spread or variability of the imputed values.

d) To quantify the imputation calibration for each variable, the imputation calibration 
coefficient ej is calculated as the absolute difference between the means of the pooled 
imputed and complete datasets: ej = |µimp

j − µcom
j | . This coefficient measures the align-

ment between imputed and observed (complete) data distributions, with lower values 
indicating better alignment and higher imputation accuracy.

Results
MICE was performed with parameters set to create five imputed datasets with a max-
imum of 50 iterations each. Four models including LinearReg, DT, RF, and XGBoost, 
were tested both with and without an acquisition function (i.e., US, PI, and EI). The γVT 
criterion was employed to determine an appropriate early stopping point if conditions 
were met.

Model‑specific results in CKD

LinearReg: Eleven variables with missing data (0.34–49.01% missing; lowest in serum 
creatinine and highest in HDL) were imputed. Baseline performance was assessed using 
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LinearReg models without uncertainty functions on five datasets with 50 iterations 
for each dataset. LinearReg exhibited an RMSE of 0.168445 and an MAE of 0.46852. 
The RMSE decreased to 0.14865 when γmF was implemented but the MAE marginally 
increased to 0.482385, illustrating a potential trade-off between these error metrics. 
However, γmF was imputed in each dataset with only two iterations, raising concerns 
about overfitting. In contrast, LinearReg with γVT yielded an RMSE of 0.174566, slightly 
higher than baseline, but a marginally lower MAE (0.471848) than LinearReg with γmF . It 
created five imputations with 18 iterations each, potentially leading to increased model 
stability compared to γmF . Therefore, γVT was chosen as an early stopping criterion for 
subsequent analyses.

The use of uncertainty functions significantly improved LinearReg models since both 
RMSE and MAE decreased considerably compared to the baseline model. For instance, 
LinearReg-US yielded an RMSE of 0.146335 and MAE of 0.441111, while LinearReg-PI 
and LinearReg-EI achieved even lower RMSEs of 0.131789 and 0.115484, and MAEs of 
0.374132 and 0.361053, respectively. Further analysis using bootstrapping with 200 resa-
mples also revealed that LinearReg-US provided a slight improvement (RMSE: 0.110015, 
MAE: 0.359432), but the impact was more pronounced for LinearReg with RMSE and 
MAE of 0.124943 and 0.369432 for PI, 0.109231 and 0.346973 for EI, respectively.
DT: The baseline DT without uncertainty functions yielded an RMSE of 0.442594 and 

MAE of 0.508017. Interestingly, the use of uncertainty functions with bootstrapping 
of 200 resamples further improved DT performance. The most significant improve-
ment was DT-EI, which yielded the lowest observed RMSE and MAE of 0.213497 and 
0.376164, respectively, followed by DT-US and DT-PI with RMSEs of 0.243913and 
0.245401 for DT-US and DT-PI, and MAEs of 0.401649 and 0.413497 when compared 
to baseline DT. However, all LinearReg experiments consistently outperformed their 
DT counterparts. While integrating uncertainty functions into both LinearReg and DT 
models reduced error rates, the extent of this reduction varied more significantly among 
the DT models. Specifically, DT models with US, PI, and EI functions achieved RMSE 
reductions of 44.89%, 44.55%, and 51.76%, respectively. In contrast, LinearReg models 
achieved RMSE reductions of 13.13%, 21.76%, and 31.44% for US, PI, and EI functions, 
respectively, indicating that while both models benefit from uncertainty functions, the 
impact is more pronounced in DT models.
RF: Baseline RF achieved lower performance compared to both baseline LinearReg 

and DT models, with an RSME of 1.019152 and MAE of 0.509738. Nonetheless, inte-
gration of uncertainty functions with RF demonstrated enhanced model performance, 
particularly with RF-EI, which achieved the best performance with 0.219435 RMSE and 
0.335892 MAE. Additionally, RF-US and RF-PI also achieved lower metrics than the 
baseline model, though slightly higher than RF-EI, with RMSE of 0.290931 and 0.232560 
and MAE of 0.385177 and 0.362912, respectively.
XGBoost: XGBoost models consistently showed the poorest performance across all 

experiments where the baseline XGBoost produced RMSE and MAE of 1.019152 and 
0.509738, which was significantly higher than all baseline models. Further analysis 
using uncertainty functions failed to make significant improvements, with XGBoost-US 
achieving the best performance among all XGBoost models with 1.047963 RMSE and 
0.442739 MAE.
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Distribution of the imputed values in CKD dataset

We further explored distributions by comparing the distribution between the imputed 
values in the amputated and complete datasets. Mean and SDs were estimated for each 
variable in the complete dataset (serving as the benchmark), and amputated dataset with 
various uncertainty functions, see Table 3. In this section, we only considered the boot-
strapped models with γVT of the regression algorithms under three different uncertainty 
functions.
LinearReg: Comparisons of the LinearReg models are described in Table 3. Significant 

improvements were observed in body weight and height, where LinearReg-EI achieved 
a 0.001 imputation error against the complete data. Specifically, LinearReg-EI resulted 
in the mean (SD) of 72.255 (12.186) for weight and 160.162 (7.942) for height, compared 
to the complete data’s benchmark of 72.256 (12.239) and 160.163 (7.986), respectively, 
across all uncertainty functions (see Table  3). In contrast, baseline LinearReg exhib-
ited the highest deviation of 0.384 kg and 0.083 cm for weight and height, respectively, 
highlighting the advantage of incorporating uncertainty functions. This trend extended 
to other variables such as glucose, cholesterol, HDL, triglycerides, uric acid, and serum 
creatinine, where LinearReg with uncertainty functions consistently outperformed the 
baseline model. For instance, for glucose levels, LinearReg-EI demonstrated the small-
est imputation error at 0.411 mg/dL, followed by LinearReg-US at 0.429 mg/dL, Linear-
Reg-PI at 2.059 mg/dL, and baseline LinearReg at 2.135 mg/dL. Similarly, LinearReg-EI 
in cholesterol, HDL, and triglycerides also showed minimal deviations of 0.03  mg/dL, 
0.002 mg/dL, and 0.004 mg/dL, respectively, with baseline LinearReg consistently gen-
erating higher imputation errors across these metrics. Furthermore, despite uric acid 
showing the highest percentage missing, uncertainty-aware LinearReg models managed 
to closely approximate the complete data distribution. Notably, LinearReg-EI showed 
an imputation error of only 0.004 mg/dL, followed by LinearReg-US at 0.007  mg/dL, 
LinearReg-PI at 0.025  mg/dL, with the baseline LinearReg of 0.119  mg/dL. Regarding 
LDL, while LinearReg-EI performed favorably in generating a close distribution with 

Table 3  Distribution of variables in complete and imputed datasets of CKD cohort by LinearReg 
with γVT  early stopping

The closest distribution with the complete data is highlighted in bold text. Baseline model refers to linear regression 
(LinearReg) without uncertainty function

US uncertainty sampling, PI probability of improvement, EI expected improvement, HbA1c hemoglobin A1c, HDL high-
density lipoprotein, LDL low-density lipoprotein. Cholesterol refers to total cholesterol, and glucose refers to fasting plasma 
glucose for brevity

Variables Complete Data Baseline LinearReg-US LinearReg-PI LinearReg-EI

Body Weight 72.26 (12.24) 72.64 (12.84) 72.25 (12.18) 72.25 (12.36) 72.26 (12.19)
Cholesterol 187.91 (39.93) 198.72 (51.21) 187.95 (38.88) 187.15 (42.49) 187.94 (38.88)
Glucose 145.36 (74.18) 147.49 (75.11) 144.93 (71.21) 143.30 (72.98) 144.94 (72.95)
HbA1c 6.72 (1.44) 6.75 (1.29) 6.67 (1.11) 7.19 (2.39) 6.67 (1.12)

HDL 45.29 (12.77) 45.06 (12.14) 45.32 (11.20) 45.387 (12.52) 45.29 (11.95)
Height 160.16 (7.99) 160.08 (8.16) 160.17 (7.94) 160.15 (8.17) 160.16 (7.94)
LDL 107.14 (27.39) 116.27 (36.56) 107.32 (24.96) 107.05 (29.87) 107.30 (26.49)

Serum Creatinine 1.48 (0.78) 1.52 (0.86) 1.48 (0.78) 1.48 (0.78) 1.48 (0.78)
Triglycerides 159.31 (99.44) 165.99 (102.40) 159.10 (91.18) 159.27 (98.14) 159.30 (99.23)
Uric Acid 7.18 (2.00) 7.30 (1.48) 7.19 (1.33) 7.16 (1.43) 7.19 (1.62)
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the complete data, LinearReg-PI achieved the closest match with mean (SD) of 107.054 
(29.872) against the benchmark of 107.141 (27.387). Imputation errors from these cor-
responding models were 0.087, 0.163, 0.175, and 9.129 mg/dL.
DT: Baseline DT yielded the highest imputation errors compared to uncertainty-aware 

DT models across all variables (see Table  4). This was a significant improvement for 
HbA1c, in which DT-US achieved the lowest imputation error of 0.005 mg/dL relative to 
DT-PI and DT-EI with imputation errors of 0.06 and 0.023 mg/dL, respectively. In addi-
tion, the DT-US had one-fifth lower imputation error when compared to the baseline 
LinearReg of 0.026 mg/dL.

Table 4  Distribution of variables in complete and imputed datasets of CKD cohort by DT with γVT  
early stopping

The closest distribution with the complete data is highlighted in bold text. Baseline model refers to decision trees (DT) 
without uncertainty function

US uncertainty sampling, PI probability of improvement, EI expected improvement, HbA1c hemoglobin A1c, HDL high-
density lipoprotein, LDL low-density lipoprotein. Cholesterol refers to total cholesterol, and glucose refers to fasting plasma 
glucose for brevity

Variables Complete data Baseline DT-US DT-PI DT-EI

Body Weight 72.26 (12.24) 72.63 (12.86) 72.25 (12.19) 72.25 (12.23) 72.25 (12.19)
Cholesterol 187.91 (39.93) 198.11 (51.63) 188.29 (39.26) 187.90 (39.29) 188.05 (39.31)

Glucose 145.36 (74.18) 146.81 (75.74) 145.36 (74.17) 144.48 (71.83) 144.94 (71.71)

HbA1c 6.72 (1.44) 6.74 (1.35) 6.73 (1.41) 6.66 (1.21) 6.70 (1.22)

HDL 45.29 (12.77) 44.77 (12.31) 45.25 (11.53) 44.94 (11.84) 45.29 (11.95)
Height 160.16 (7.99) 160.09 (8.17) 160.17 (7.96) 160.16 (7.97) 160.16 (7.96)
LDL 107.14 (27.39) 115.93 (37.00) 107.23 (26.01) 107.88 (26.28) 107.93 (26.28)

Serum Creatinine 1.48 (0.78) 1.52 (0.86) 1.48 (0.78) 1.48 (0.78) 1.48 (0.78)
Triglycerides 159.31 (99.44) 164.53 (104.54) 159.32 (99.96) 159.29 (99.90) 159.30 (92.43)
Uric Acid 7.18 (2.00) 7.28 (1.66) 7.17 (1.46) 7.19 (1.62) 7.19 (1.49)

Table 5  Distribution of variables in complete and imputed datasets of CKD cohort by RF with γVT  
early stopping

The closest distribution with the complete data is highlighted in bold text. Baseline model refers to random forests (RF) 
without uncertainty function

US uncertainty sampling, PI probability of improvement, EI expected improvement, HbA1c hemoglobin A1c, HDL high-
density lipoprotein, LDL low-density lipoprotein. Cholesterol refers to total cholesterol, and glucose refers to fasting plasma 
glucose for brevity

Variables Complete data Baseline RF-US RF-PI RF-EI

Body Weight 72.26 (12.24) 72.64 (12.84) 72.25 (12.18) 72.25 (12.18) 72.25 (12.21)

Cholesterol 187.91 (39.93) 198.12 (51.31) 188.92 (39.33) 188.92 (39.25) 187.67 (39.29)
Glucose 145.36 (74.18) 147.29 (75.23) 145.19 (71.55) 144.75 (71.27) 145.61 (71.28)

HbA1c 6.72 (1.44) 6.75 (1.26) 6.74 (1.26) 6.69 (1.17) 6.70 (1.17)

HDL 45.29 (12.77) 44.95 (11.84) 44.98 (11.30) 44.95 (11.22) 45.15 (11.24)
Height 160.16 (7.99) 160.09 (8.16) 160.17 (7.95) 160.17 (7.95) 160.16 (7.97)
LDL 107.14 (27.39) 116.00 (36.80) 108.49 (26.07) 108.66 (25.88) 108.08 (25.89)
Serum Creatinine 1.48 (0.78) 1.52 (0.86) 1.48 (0.78) 1.48 (0.78) 1.48 (0.78)
Triglycerides 159.31 (99.44) 162.91 (103.53) 159.32 (91.70) 158.17 (91.06) 157.48 (91.16)

Uric Acid 7.18 (2.00) 7.27 (1.48) 7.19 (1.38) 7.19 (1.35) 7.18 (1.36)
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Uncertainty-aware models, particularly DT-EI, achieved the closest distribution to 
the complete dataset for body weight, height, HDL, triglycerides, uric acid, and serum 
creatinine. However, LinearReg models showed distributions more closely resembling 
the complete dataset than their DT counterparts. For instance, LinearReg-EI achieved 
closer distribution for body weight, with a lower imputation error of 0.001 kg, com-
pared to 0.003 kg for DT-EI. Even so, total cholesterol, HbA1c, and glucose provided 
the lowest imputation error in uncertainty-aware DT model than in LinearReg mod-
els. Meanwhile, DT-US achieved the closest distribution for glucose and LDL with an 
imputation error of 0.006 mg/dL and 0.093 mg/dL. Further detailed comparisons of 
the DT models are provided in Table 4.
RF: Baseline RF model consistently exhibited the highest imputation errors across 

all RF models tested (see Table 5). Specifically, variables such as height, cholesterol, 
HDL, LDL, and uric acid closely approximated the benchmark distribution when 
using DT-EI. Conversely, for weight, glucose, HbA1c, and triglycerides, DT-US 
yielded imputed distributions closest to the benchmark. Surprisingly, serum creati-
nine produced the same distribution of 1.480  mg/dL (0.780) in DT-US, DT-PI, and 
DT-EI, deviating minimally by 0.003 mg/dL from the complete data distribution.

Imputation errors in RF models were marginally higher compared to LinearReg and 
DT counterparts despite increased model complexity. For instance, triglycerides had 
an imputation error of 0.004  mg/dL in LinearReg-EI but increased dramatically to 
1.821 mg/dL in RF-EI. Other variables, such as body weight, total cholesterol, HDL, 
and LDL also followed this trend.
XGBoost: Despite exhibiting higher imputation errors compared to the baseline 

XGBoost model, uncertainty-aware XGBoost consistently demonstrated superior per-
formance across most variables, with notable exceptions being uric acid and HbA1c 
(see Table 6). Surprisingly, despite these variables having the highest rates of missing 
data, the baseline XGBoost model yielded imputed distributions that closely matched 
the complete dataset more often than the uncertainty-aware XGBoost models. For 

Table 6  Distribution of variables in complete and imputed datasets of CKD cohort by XGBoost with 
γVT  early stopping

The closest distribution with the complete data is highlighted in bold text. Baseline model refers to XGBoost without 
uncertainty function

US uncertainty sampling, PI probability of improvement, EI expected improvement, HbA1c hemoglobin A1c, HDL high-
density lipoprotein, LDL low-density lipoprotein. For clarity, cholesterol refers to total cholesterol, and glucose refers to 
fasting plasma glucose for brevity

Variables Complete Data Baseline XGBoost-US XGBoost-PI XGBoost-EI

Body Weight 72.26 (12.24) 72.55 (12.88) 71.90 (12.66) 72.110 (12.304) 72.13 (12.23)
Cholesterol 187.91 (39.93) 196.79 (51.76) 181.75 (46.01) 184.758 (41.428) 185.79 (41.24)
Glucose 145.36 (74.18) 147.15 (75.43) 141.70 (73.10) 143.804 (71.610) 144.80 (71.53)
HbA1c 6.72 (1.44) 6.67 (1.30) 5.86 (1.51) 6.294 (1.304) 6.29 (1.24)

HDL 45.29 (12.77) 44.92 (12.85) 42.05 (13.69) 43.523 (12.096) 44.50 (12.95)
Height 160.16 (7.99) 160.05 (8.18) 159.79 (8.81) 159.923 (8.378) 160.16 (8.05)
LDL 107.14 (27.39) 114.55 (37.21) 96.92 (32.89) 103.342 (27.404) 105.38 (27.24)
Serum Creatinine 1.48 (0.78) 1.52 (0.86) 1.49 (0.80) 1.483 (0.783) 1.48 (0.80)

Triglycerides 159.31 (99.44) 161.73 (104.67) 149.68 (94.92) 155.24 (91.78) 158.39 (91.01)
Uric Acid 7.18 (2.00) 7.18 (1.57) 5.87 (1.922) 6.67 (1.54) 6.67 (1.54)
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instance, uric acid showed imputed mean (SD) values of 7.182 (1.574)  mg/dL with 
XGBoost-PI and XGBoost-EI, closely aligning with the complete data distribution. 
Similarly, HbA1c exhibited imputed values of 6.670 (1.300) mg/dL with XGBoost-US, 
indicating a significant deviation from the actual data. Serum creatinine obtained its 
closest distribution to the complete data using XGBoost-PI. Moreover, it also exhib-
ited minimal variance across all methods, with imputed values consistently hovering 
around 1.483 (0.783) mg/dL, suggesting stable performance but with slight deviations 
from the complete data distribution. Detailed comparisons of the XGBoost models 
are provided in Table 6.

External validation using HT datasets

We validated the proposed imputation methods using two independent HT datasets 
from RAMA and KKU. Missing data were imputed for nine variables. In HT-RAMA, 
missing data ranged from 15.75% (height) to 53.32% (HDL); in HT-KKU, the range was 
28.2% (SBP/DBP) to 67.88% (HDL). A multivariate amputation procedure was applied, 
identifying 194 unique missingness patterns in HT-RAMA and 127 patterns in HT-
KKU. To ensure the proper replication of both missing rates and the characteristics of 
the original HT datasets, we selected the top 21 most representative patterns in HT-
RAMA and six patterns in HT-KKU for further analysis. Additional details regarding the 
variable schema used in the imputation process are provided in Supplementary Table 4.

HT‑RAMA dataset

The HT-RAMA dataset showed higher rates of missing data than the CKD cohort, led 
by HDL (53.32%), LDL (48.25%), and triglyceride (44.72%) (see Supplementary Table 2). 
Demographic variables, such as height and body weight, also had higher missing rates of 
15.75% and 31.59%, respectively, versus 6.16% and 4.16% among the CKD cohort. SBP 
and DBP had identical missing rates of 30.64%. In addition, the missing rate for total 
cholesterol in the HT dataset was 35.36%, more than three times higher than for CKD 
cohort (10.22%). Serum creatinine, a critical marker for kidney function, had a missing 
rate of 28.63% in the HT dataset, in contrast to no missing data in the CKD cohort. The 

Table 7  Value distribution of variables with missing values in complete and amputated datasets 
from HT-RAMA cohort

DBP diastolic blood pressure, HDL high-density lipoprotein, LDL low-density lipoprotein, SBP systolic blood pressure. 
Cholesterol refers to total cholesterol for brevity

Variables Mean (SD) Missing rate (%)

Original data Complete data Amputated data Original data Amputated data

Height 159.45 (8.75) 159.75 (8.87) 159.82 (8.88) 15.75 13.48

Body Weight 65.71 (15.45) 67.00 (15.82) 67.00 (15.92) 31.59 30.43

SBP 143.67 (22.85) 146.05 (22.36) 145.77 (22.33) 30.64 30.43

DBP 82.91 (11.66) 83.97 (11.88) 84.08 (11.86) 30.64 30.43

Cholesterol 208.67 (51.92) 211.58 (49.32) 211.71 (49.18) 35.36 37.38

HDL 50.16 (13.84) 50.41 (13.75) 50.98 (13.94) 53.32 54.36

LDL 132.81 (42.18) 134.68 (42.44) 134.21 (42.05) 48.25 51.15

Triglycerides 146.88 (93.53) 147.53 (94.01) 145.91 (92.17) 44.72 47.27

Serum Creatinine 0.93 (0.83) 0.88 (0.61) 0.87 (0.6) 28.63 28.99
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pre- and post-amputation distributions of HT-RAMA data and missing rates for each 
variable are detailed in Table 7.

HT‑KKU dataset

The HT-KKU dataset exhibited high missingness, particularly in HDL (70.34%), LDL 
(70.34%), and triglycerides (70.34%), with slight increase from the original missing rates 
(67.88%, 67.33%, and 67.06%, respectively), suggesting that the amputation procedure 
preserved the missingness structure. Demographic variables such as height (43.55%) and 
body weight (42.30%) maintained similar missing rates post-amputation (43.4% each), 
ensuring consistency in data patterns. Similarly, SBP and DBP saw minimal changes 
(28.20–29.21% for both), while cholesterol (48.41–52.02%) and serum creatinine (37.36–
39.03%) showed slight increases. Importantly, the mean values of the amputated data 
closely align with the original and complete datasets, confirming that the distribution 
remained stable and consistent despite data amputation. The pre- and post-amputation 
distributions of HT-KKU data and missing rates for each variable are detailed in Table 8.

Model‑specific results in HT cohorts

HT‑RAMA

LinearReg: Baseline LinearReg model achieved an RMSE and MAE as high as 11.4946 
and 14.5406, respectively. The performance metrics remained the same after apply-
ing the γVT criterion. With early stopping conditions applied, the number of iterations 
required before stopping varied across the datasets: 29 iterations for the first two data-
sets, and significantly fewer—7, 6 and 6 iterations respectively—for the last three.

LinearReg-US greatly improved the imputation performance since RMSE and MAE 
decreased to 0.2427 and 8.1605 at maximum iterations, and 0.2563 and 8.1645 when γVT 
was applied. Further smaller improvements were observed with the use of other acquisi-
tion functions. LinearReg-PI achieved an RMSE and an MAE of 0.2411 and 8.1457 at 
maximum iterations without γVT and 0.2410 and 8.1457 with γVT . Similarly, LinearReg-
EI reached an RMSE of 0.2408 and an MAE of 8.1457 without γVT , the metrics were 
0.2407 and 8.1457 with γVT , respectively. These uncertainty-aware models performed 

Table 8  Value distribution of variables with missing values in complete and amputated datasets 
from HT-KKU cohort

DBP diastolic blood pressure, HDL high-density lipoprotein, LDL low-density lipoprotein, SBP systolic blood pressure. 
Cholesterol refers to total cholesterol for brevity

Variables Mean (SD) Missing Rate (%)

original data complete data amputated data original data amputated data

Height 160.46 (8.53) 160.81 (8.55) 160.98 (8.56) 43.55 43.40

Body Weight 63.84 (15.48) 65.66 (15.59) 65.88 (15.91) 42.30 43.40

SBP 135.53 (20.18) 135.50 (18.01) 135.39 (18.01) 28.20 29.21

DBP 77.36 (12.95) 77.54 (12.03) 77.69 (12.05) 28.20 29.21

Cholesterol 184.06 (58.23) 190.74 (53.18) 191.47 (54.21) 48.41 52.02

HDL 51.30 (16.66) 52.12 (16.50) 52.50 (16.81) 67.88 70.34

LDL 124.28 (48.04) 125.15 (47.48) 124.62 (47.15) 67.33 70.34

Triglyceride 150.43 (94.09) 150.97 (95.53) 148.32 (90.49) 67.06 70.34

Serum Creatinine 1.14 (1.25) 1.03 (0.91) 1.03 (0.91) 37.36 39.03
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more poorly by increasing RMSE, which is about 2 times higher when compared to per-
formance in the CKD data, see Table 9.

Despite these observed improvements, the early stopping conditions outlined by γVT 
were not met when these acquisition functions were employed. This resulted in all mod-
els processing to the maximum of 50 iterations for the last three datasets after com-
pleting 29 iterations for the initial two datasets. This pattern was consistent across all 
regression models tested, including LinearReg, DT, RF, and XGBoost. Consequently, 
for these models, there was no variation in performance metrics between experiments 
with maximum iterations and those with the γVT conditions. The data distribution of the 
imputed values in HT-RAMA using LinearReg is found in Supplementary Table 7.
DT: The baseline DT model demonstrated slightly higher error rates to the baseline 

LinearReg model, with an RMSE and an MAE of 11.5991 and 14.9566 versus 11.4946 
and 14.5406. The use of acquisition functions improved the performance of DT with 
DT-US reducing the RMSE and MAE to 0.8571 and 8.6828, while DT-PI achieved at 
0.9578 and 8.7398 and DT-EI achieved 0.9547 and 8.7477, respectively. However, all 
DT experiments consistently yielded lower performances compared to their LinearReg 
counterparts. Additionally, while the integration of acquisition functions in both mod-
els resulted in reduced error rates, the extent of this reduction varied more significantly 
among DT models. Specifically, while the LinearReg models experienced a substantial 
decrease in RMSE, achieving a 97.89–97.90% reduction from the baseline model, DT 
models showed less pronounced improvements: 91.74% in DT-PI, 91.76% in DT-EI, and 
92.61% in DT-US. This pattern of relatively smaller reductions in RMSE for machine 

Table 9  Model performance in CKD, HT-RAMA, and HT-KKU cohorts with uncertainty functions and 
γVT  early stopping

The root mean squared error (RMSE) and mean absolute error (MAE) are expressed in four decimal points. The best-
performing models are indicated in bold text. Baseline refers to models without uncertainty functions

CKD chronic kidney disease, HT hypertension, LinearReg Linear Regression, DT Decision Trees, RF Random Forests, XGBoost 
Extreme Gradient Boosting, US Uncertainty Sampling, PI Probability of Improvement, EI Expected Improvement

Model Uncertainty-Aware CKD HT-RAMA HT-KKU

RMSE MAE RMSE MAE RMSE MAE

LinearReg Baseline 0.1684 0.4685 11.4946 14.5406 26.4892 25.4832

LinearReg—US 0.1318 0.3741 0.2563 8.1645 0.9799 12.0043
LinearReg—PI 0.1100 0.3594 0.241 8.1457 0.9899 12.0245

LinearReg—EI 0.1092 0.3470 0.2407 8.1457 0.9934 12.0246

DT Baseline 0.4426 0.5080 11.5991 14.9566 26.5210 25.6780

DT—US 0.3488 0.4159 0.8571 8.6828 2.0977 12.6337
DT—PI 0.2439 0.4016 0.9578 8.7398 2.3035 12.7771

DT—EI 0.2135 0.3762 0.9547 8.7477 2.1822 12.6898

RF Baseline 1.0191 0.5097 11.6277 14.726 26.5356 26.0943

RF—US 0.2909 0.3852 0.9173 8.5753 2.0335 12.9682

RF—PI 0.2326 0.3629 1.2354 8.6382 1.9315 12.9035
RF—EI 0.2194 0.3359 1.4226 8.6578 1.9443 12.9280

XGBoost Baseline 1.0192 0.5097 19.8503 19.4089

XGBoost—US 1.0480 0.4427 14.846 14.4823
XGBoost—PI 1.6132 0.5330 18.3232 17.6995

XGBoost—EI 1.6545 0.5140 18.3345 17.6925
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learning based models was also observed in other regression models as well. The acqui-
sition functions DT-US, DT-PI, and DT-EI models performed less well, having RMSEs 
about 2.5 to 4.5 times higher in HT than CKD cohorts, see Table 8. The data distribution 
of the imputed values in HT-RAMA using DT is reported in Supplementary Table 8.
RF: The baseline RF model had lower performance than both the baseline LinearReg 

and DT model at 11.6277 RMSE and 14.726 MAE. The incorporation of uncertainty 
sampling function RF-US dramatically reduced the error rate by 92.11% with RMSE of 
0.9173 and MAE of 8.5753. The improvement in performance was lower in other acqui-
sition functions with 89.38% for RF-PI (1.2354 and 8.6382) and 87.8% for RF-EI (1.4226 
and 8.6578). These models were poorer, increasing RMSE about 3.15 to 6.48 times higher 
in the HT cohort than the CKD cohort. The data distribution of the imputed values in 
HT-RAMA using RF is reported in Supplementary Table 9.
XGBoost: XGBoost models consistently showed the lowest performance across all 

experiments. They had the highest error rates, with an RMSE of 19.8503 and an MAE of 
19.4089. The incorporation of acquisition functions failed to make significant improve-
ments, with XGBoost-US being the best, with RMSE of 14.8460 and MAE of 14.4800. PI 
and EI functions had minimal reductions of error rate at 7.69% (18.3232 and 17.6995) 
and 7.64% (18.3445 and 17.6925), respectively. These models performed less well by 
increasing RMSEs about 11.08–14.17 times higher in the HT compared to the CKD data, 
see Table 8. The data distribution of the imputed values in HT-RAMA using XGBoost is 
found in Supplementary Table 10.

HT‑KKU

All baseline models in HT-KKU exhibited extremely high RMSE and MAE across all 
models, with RMSE exceeding 26.48 and MAE above 25.48, reinforcing its poor impu-
tation performance. In contrast, integrating uncertainty-aware functions significantly 
reduced errors, with LinearReg-US achieving lowest RMSE (0.9799) and MAE (12.0043), 
followed by RF and DT.
LinearReg: Baseline LinearReg exhibited high imputation errors, with an RMSE of 

26.4892 and an MAE of 25.4832. Incorporating uncertainty-aware acquisition functions 
drastically improved performance, reducing RMSE by approximately 96% and MAE by 
53% compared to the baseline. Among these, LinearReg-US achieved the lowest errors, 
with an RMSE of 0.9799 (96.3% decrease) and an MAE of 12.0043 (52.9% decrease), 
followed closely by LinearReg-PI (RMSE = 0.9899, MAE = 12.0245) and LinearReg-EI 
(RMSE = 0.9934, MAE = 12.0246). While the differences between the uncertainty-aware 
models were minimal, LinearReg-US consistently outperformed the others, demonstrat-
ing its superior ability to reconstruct missing data with minimal imputation errors. The 
data distribution of the imputed values in HT-KKU using LinearReg is found in Supple-
mentary Table 11.
DT: Like LinearReg, baseline DT model exhibited high imputation errors, with an 

RMSE and MAE as high as 26.5210 and 25.6780, respectively. Incorporating uncertainty-
aware functions substantially reduced RMSE by 92.1% (DT-US: 2.0977), 91.3% (DT-PI: 
2.3035), and 91.8% (DT-EI: 2.1822) compared to the baseline. Among these, DT-US 
achieved the best performance, with the lowest RMSE (2.0977) and MAE (12.6337). 
Despite these improvements, DT models still exhibited higher imputation errors than 
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LinearReg, with DT-US having an RMSE more than twice that of LinearReg-US (2.0977 
vs. 0.9799). Similarly, MAE in DT-US (12.6337) remained 5.2% higher than in Linear-
Reg-US (12.0043), indicating DT was less precise than LinearReg across all uncertainty-
aware functions. The data distribution of the imputed values in HT-KKU using DT is 
found in Supplementary Table 12.
RF: Baseline RF exhibited the highest imputation errors, with an RMSE of 26.5356 and 

an MAE of 26.0943. After the integration of uncertainty-aware functions, RMSEs sig-
nificantly reduced by 92.3% (RF-US: 2.0335), 92.7% (RF-PI: 1.9315), and 92.7% (RF-EI: 
1.9443) compared to the baseline RF model. Among these, RF-PI demonstrated the best 
performance with the lowest RMSE (1.9315) and MAE (12.9035), outperforming RF-US 
and RF-EI. Compared to DT models, RF achieved lower imputation errors, with RF-PI 
(1.9315 RMSE) improving upon the best DT model, DT-US (2.0977 RMSE), by 7.9%. 
However, RF models still exhibited higher RMSE than LinearReg, where LinearReg-US 
(0.9799 RMSE) was 49.3% lower than RF-PI. Similarly, MAE in RF models remained 
higher than LinearReg, with RF-PI (12.9035) performing 7.5% worse than LinearReg-
US (12.0043). Overall, RF-PI provided the most accurate imputation within RF models 
and outperformed DT across all uncertainty-aware methods. However, RF remained less 
precise than LinearReg, indicating that RF still benefits from uncertainty-aware func-
tions. The data distribution of the imputed values in HT-KKU using RF is found in Sup-
plementary Table 13.

Discussion
We have introduced a novel method incorporating uncertainty to handle missing values 
in RWD. Our approach utilizes uncertainty functions (i.e., US, PI, and EI) to provide 
a more precise estimate by calculating the imputation uncertainty of each sample and 
aggregating the variances of the imputed values. The US penalizes and prioritizes sam-
ples with the least imputation uncertainty. Contrastingly, PI and EI select samples with 
high uncertainty, which assumes that these samples are most likely to provide significant 
improvement in subsequent iterations.

To validate our method, we applied it to three large real-world clinical datasets (CKD, 
HT-RAMA, and HT-KKU), with high rates of missing data, particularly uric acid 
(49.01%) and HbA1c (40.72%) in the CKD dataset, and HDL and LDL in the HT data-
sets (HT-RAMA: HDL 53.32%, LDL 48.25%; HT-KKU: HDL 67.84%, LDL 67.47%). Inte-
grating three uncertainty-aware functions (US, PI, EI) with four ML models (LinearReg, 
DT, RF, XGBoost) significantly improved model performance and yielded more robust 
imputed values of 11 and 9 variables in CKD and HT data compared to a baseline model 
without uncertainty functions. Of ML models, LinearReg showed the best overall per-
formance. Patient overlap between the CKD and HT-RAMA datasets (from the same 
hospital) resulted in overfitting, as indicated by lower RMSE and MAE values in the HT-
RAMA dataset compared to the HT-KKU dataset in both baseline models and mod-
els with uncertainty functions. In contrast, HT-KKU dataset, which lacks such overlap, 
exhibited higher error metrics, which indicates a more stringent and realistic assessment 
of model generalizability.

Our findings highlight the risks associated with using MICE without uncertainty-
aware functions, as the imputed distributions for variables deviated significantly from 
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the true data distribution. This deviation was particularly evident in the HT-KKU data-
set, where baseline LinearReg produced RMSE (26.4892) and MAE (25.4832), indicat-
ing severe misalignment between the imputed and actual values. Similarly, in the CKD 
cohort, baseline XGBoost underperformed, producing an RMSE of 1.0192 and MAE 
of 0.5097, with imputed values substantially deviating from the expected distribution. 
Such discrepancies raise concerns about the reliability of imputation without uncer-
tainty, as it introduces systematic biases that may distort subsequent analyses. The 
inability of standard MICE to preserve key statistical properties can lead to inaccurate 
inferences, particularly in clinical studies where even minor deviations can alter medical 
decision-making.

LinearReg-EI demonstrated superior performance in the CKD and HT-RAMA data-
sets, while LinearReg-US achieved the lowest RMSE and MAE in the HT-KKU data-
set. In contrast, XGBoost consistently produced the poorest performance across CKD 
and HT-RAMA datasets. The observed differences in performance between LinearReg 
versus XGBoost in both datasets may be attributed to the bias-variance trade-off inher-
ent in these models. XGBoost excels in reducing bias through its boosting mechanism; 
however, this often results in higher variance (uncertainty), especially when the model is 
not optimally tuned [46, 47]. In addition, the complexity of XGBoost necessitates careful 
tuning of multiple parameters, including learning rate, maximum depth, and the number 
of boosting rounds, making it time-consuming and computationally demanding [48]. In 
this study, XGBoost utilized random search for 25 h in CKD and 13 h in the HT dataset 
instead of the more exhaustive grid search, which may have contributed to suboptimal 
performance.

The superior performance of the baseline XGBoost model compared to its uncer-
tainty-aware counterparts and other ML methods warrants further investigation. This 
unexpected finding may stem from how XGBoost handles residuals during tree con-
struction. Unlike RF, which split nodes based on target purity (e.g., minimizing variance 
in regression tasks), XGBoost iteratively builds trees to correct residuals (gradients of 
the loss function) inherently accounting for uncertainty in the imputed values by focus-
ing on prediction errors from prior iterations. Introducing uncertainty-aware functions 
might disrupt this process, by adding constraints that conflict with the gradient-based 
updates. Furthermore, XGBoost’s complexity requires careful hyperparameter tun-
ing, which is especially challenging under limited computational resources. This makes 
XGBoost potentially more susceptible to overfitting when uncertainty functions are 
added. While RF’s purity-based splits are better suited to the US, XGBoost’s reliance on 
residuals may make it less responsive to external uncertainty adjustments. This suggests 
that uncertainty-aware methods may be more compatible with LinearReg, DT, or RF, 
which do not inherently optimize error correction via residuals. However, further inves-
tigation is needed to confirm this hypothesis and explore the response of other boosted-
tree models to uncertainty-aware imputation.

Only a small number of studies have incorporated uncertainty in their imputation 
frameworks [31–33]. However, they used uncertainty functions (such as random sam-
pling, gini index, and entropy) that are only used for classification tasks. Han and Kang 
[32] originally proposed the US and applied it to RF, artificial neural network, and soft-
max regression models using 20 benchmark datasets with no missing values [32]. They 
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created five incomplete versions of each dataset by varying the missing rates between 
10%, 20%, 30%, 40%, and 50% based on the MCAR mechanism. Their results demon-
strated the effectiveness of incorporating US in improving the performance across all 
three regression models. In this study, the US also showed superior performance com-
pared to the baseline across all regression models, particularly in the HT-KKU dataset. 
The US helps prevent inaccurately imputed samples from being selected for training by 
choosing samples with lowest uncertainty, thereby avoiding any degradation in the per-
formance of the model.

Overall, EI consistently generated the imputed values with the closest distribution to 
the original dataset across all regression models except XGBoost. One possible reason 
for this is that EI inherently identifies new points in the imputed distribution that have 
the potential to offer the most significant improvement over the current best imputed 
values [42]. Unlike the US, samples with high uncertainty are selected for re-imputa-
tion because they represent areas with high potential improvement. This encourages 
the exploration of new values that might offer better imputation quality [49]. Moreover, 
while PI effectively identifies areas with a high likelihood of improvement based on low-
est uncertainty like EI, it might not balance exploration and exploitation as efficiently as 
EI [49, 50]. PI tends to focus more on regions of the imputed distribution with known 
good performance, potentially leading to less exploration of the imputed space. This can 
result in less diversity in the imputed values and may not always capture the original 
data distribution as accurately as EI. For example, in the CKD dataset, EI corrected cho-
lesterol distribution more efficiently than US or PI, demonstrating its ability to recover 
the true data structure. Similarly, in HT-KKU, LinearReg-EI improved RMSE by 96.3% 
compared to the baseline, showcasing its effectiveness in handling missing data.

Conclusion
In conclusion, applying any method of uncertainty functions in MICE could greatly 
improve the performance of the ML models compared with the models without uncer-
tainty functions. This study fills a crucial gap by extending the application of uncertainty 
functions to real-world clinical datasets with a high percentage of missingness. Linear-
Reg-EI performed the best and may be applied in the MICE for predicting missing val-
ues for both categorical and continuous data. In addition, our framework shows a great 
promise in enhancing the robustness of predictive models in clinical settings by select-
ing samples accounting for their uncertainty to mitigate the degradation in model per-
formance. Our results suggest that uncertainty-aware imputation can be generalized to 
other clinical domains, making it a valuable tool for improving data integrity and deci-
sion-making in healthcare research.
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